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1 Introduction

2 Risk Factors
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The purpose of this research project was to establish a robust methodology to calculate
the  correlations  between  the  risk  factors  most likely  to impact a general insurer’s (GI)

balance sheet over a 1-year period.  To that end, we identified a total  of  five  risk  factors
which we sought to model, namely interest  rates, yield on  high-quality  corporate  bonds,

risk-free rate, inflation, and Gross Domestic Product (GDP).  In addition,  two  statistical
models were used to forecast rolling correlations among pairs of risk factors:  1) an ARMA
model based on a rolling window, and 2) a DCC-GARCH model. Through this project, we

found the DCC-GARCH model to be the superior method to forecast these correlations.

This paper is structured as follows: firstly, we list the risk factors we have identified that

are mostly like to  impact  a  GI’s  balance  sheet  and  provide  the  necessary  justification;
secondly,  we  provide  an  overview  of  the  theoretical  framework  of this project; thirdly,
we outline the methodology employed to calculate the correlations  in  practice;  lastly,  we

present the results of our research and provide an evaluation of the methods used.

Credit, longevity, persistency and equity  risks  remain  the  highest individual contribu-

tors to  UK  insurers  undiversified  and  diversified  Solvency Capital Requirement (SCR).
Under Solvency II, firms are required to  put  money  aside  so  that  if  (multiple)  extreme
(the standard is a 1 in 200) events  occur,  they  need  not  declare  bankruptcy.  Therefore,

the risk factors chosen were those which are  likely  to  have  the  largest  impact  on a GI’s
balance sheet.  In order to identify the  most  significant  factors,  an  assessment  of a GI’s

balance sheet alongside their product offerings was  undertaken.  It  was  determined  that
general insurance underwriting risk is one  of  a  GI’s  most  crucial  factors,  while  Equity

Release Mortgages (ERMs) are being increasingly used.  Given  the  subjectivity  involved
in valuing and managing ERMs and the materiality of this  asset  class, such assets are re-

ceiving increasing regulatory scrutiny, and hence this was taken into  consideration  when
selecting the risk factors.
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1. Interest rates: Interest rate risk for insurance companies is a significant factor in
determining profitability. Changes in interest rates can affect the assets and the liabilities
of an insurance company. Insurance companies have substantial investments in interest-
sensitive assets, such as bonds, as well as market interest rate-sensitive products for their
customers, such as pension products. As such, an insurer’s profitability rises and falls
in concert with interest rate increases or decreases. Drops in interest rates can decrease
an insurance company’s liabilities by decreasing its future obligations to policyholders.
The net impact on the company’s profitability is determined by whether the decrease
in liabilities is greater or less than any reduction in assets that is experienced (Ozdagli
& Wang, 2019). While the precise effect of interest rate changes on a specific insurance
company may be uncertain, historical analysis shows that the overall trend is for the
profitability of the insurance sector to increase in an environment of rising interest rates.
Overall price-to-earnings (P/E) ratios for insurance company stocks usually increase in
fairly direct proportion to increases in interest rates.

2. Yield on high-quality corporate bonds: Pension scheme risk exposes a firm to
demographic risks that are similar to the underwriting risks run by the firm. A particular
example of strong correlations would be where a firms insurance business exposes it to
longevity risk (James & Normand, 2019). Where pension schemes are valued on the
Solvency II balance sheet under IAS19, insurers use the yield on high-quality corporate
bonds for the valuation of the liabilities. Unfortunately, we were unable to retrieve data
on a yield curve from the set of UK listed high-quality corporate bonds rated AAA, AA,
or A that accurately represent the high-quality corporate bond market. Therefore, we
used market performance data from the FTSE100 index as we would be able to infer
high-quality corporate bond performance from this. The FTSE100 index’s relationship
with bond prices and yields tends to work as follows:

When the cost of borrowing money (interest) is low (which is usually met with low
bond yields) it tends to stimulate business growth. Business growth causes stocks to go
up. When the economy is expanding and stock prices are rising, there is an increasing
demand for borrowed money. When all of these factors are increasing in value at the
same time, it causes inflation. When there is inflation, lenders charge higher rates of
interest to offset the effects of inflation. This means that new bonds will have higher
interest rates. In order to remain competitive, the prices of existing bonds will drop,
which causes their yield to rise.
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3.  Risk-free rate:  The  risk-free  rate  is  the  rate  of  return  of  an  investment  with  no
risk of loss.  Most often long-term government bond yields are used as the risk-free rate.
Non-life (indicating general insurance) underwriting risk continues to be the greatest risk
for  the  insurers  with  around  two-thirds  identifying  it  as  such  (Drummond,  2019).   As

such, a GI’s most material risk changed from market to non-life underwriting in 2018.
This followed a slight reduction in the level of market risk whilst non-life underwriting

risk is broadly unchanged since 2017.  On an aggregate basis, it was found that 63% of
insurers assets at the 2018 year-end were held in either corporate or government bonds (see

Figure 1).  Furthermore, general liability insurers, in aggregate, were noted as holding a
greater proportion of their investments in government and corporate bonds than property

insurers (78% versus 33%).  This may reflect the longer-tailed nature of the liabilities of



general liability insurers, compared to property insurers, meaning longer duration assets
are required (see Figure 2).

Figure 1: Aggregate investment holdings (Source: Drummond, 2019)

Figure 2: Aggregate investment holdings by type of insurer (Source: Drummond, 2019)

4. Inflation: Inflation - Inflation impacts insurers claims and general expenses, the
value of liabilities and, less directly, the value of assets. Inflation affects life and non-life
insurers in different ways. For non-life insurers, unanticipated inflation leads to higher
claims costs, thereby eroding profitability (Ahlgrim & D’Arcy, 2012). Extended periods
of accelerating inflation are especially problematic for long-tail casualty lines of business.
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For life insurers, both inflation and deflation are risks. Inflation is often accompanied by
rising interest rates, which reduce the value of return guarantees. In the case of deflation,
or if very low inflation persists, interest rates tend to fall. This makes it more difficult for
life insurers with large portfolios of minimum interest rate guarantee savings products to
earn the appropriate asset returns.

5. Gross Domestic Product (GDP): As insurance companies generate income
by investing premium payments, the economy can greatly impact an insurance business.
Insurance companies invest premiums in dividend-paying stocks, mortgage-backed secu-
rities, real estate and financial institutions, such as banks, all of which are vulnerable
to economic changes. When the economy is doing well, investment returns will increase
and insurance companies may be more likely to accept a claim. With a slow economy,
however, the returns will decrease. Insurance companies will need to recover the invested
money somehow (Ul Din, Abu-Bakar, & Regupathi, 2017). They will do this by taking
a loan themselves, or by challenging their existing operations, especially the significant
ones like claims. Settling claims efficiently is the solution.

3 Theoretical Framework

There are many existing methods to estimate conditional correlations in the field of
statistics. This section provides a summary of the methodologies to establish 1. rolling
window correlations, and 2. models for correlation forecasting.

3.1 Methods of Establishing Rolling Windows

Two popular methods for establishing rolling windows are the rolling window estimator
and the exponential smoother. The rolling correlation estimator is defined for returns
with zero mean and can be computed through the following formula:

ρ̂12,t =

∑t=1
s=t−n−1 r1,s · r2,s√

(
∑t=1

s=t−n−1 r
2
1,s) · (

∑t=1
s=t−n−1 r

2
2,s)

This method provides estimates in the range [−1, 1] and gives equal weight to all
observations fewer than n periods in the past and zero weight to observations older than
that.

An alternative method that does not pick a specific termination point but emphasises
current observations through assigning greater weights to more recent observations is the
exponential smoother, that is given by the formula:

ρ̂12,t =

∑t=1
s=1 λ

t−s−1 · r1,s · r2,s√
(
∑t=1

s=1 λ
t−s−1 · r21,s) · (

∑t=1
s=1 λ

t−s−1 · r22,s)

3.2 Methods for Forecasting: The DCC-GARCH model

The Dynamic Conditional Correlation (DCC-GARCH) model (Engle, 2002) decom-
poses the conditional covariance matrix of a multivariate time series into the product of
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the conditional standard deviations and the conditional correlations. Whereas in the Con-
stant Conditional Correlation (CCC-GARCH model) (Bollerslev, 1990) the conditional
correlation matrix is assumed to be a matrix of constants, the DCC-GARCH model en-
ables us to model time-varying conditional correlations. The remainder of this section is
devoted to providing a brief overview of the theory of the DCC-GARCH model.

Suppose we have returns, at, from n assets with expected value 0 and covariance matrix
Ht. Then the DCC-GARCH model is defined as:

rt = µt + at (1)

at = H
1/2
t εt (2)

Ht = DtRtDt (3)

where:
rt ∈ Rn×1 is the log returns of n assets at time t.
µt ∈ Rn×1 is the expected value of the conditional log returns, and is assumed to be
constant.
at ∈ Rn×1 is the mean-corrected returns of n assets at time t, and E[at] = 0.
Ht ∈ Rn×n is the matrix of the conditional variances of at at time t.
εt ∈ Rn×1 is the vector of i.i.d. errors such that E[εt] = 0 and E[εtε

′
t] = In, which is an

n× n identity matrix and ε
′
t indicates the transpose of εt. It is assumed for this project

that the errors follow a multivariate Student’s t-distribution.
Dt ∈ Rn×n is a diagonal matrix of conditional standard deviations of at at time t.
Rt ∈ Rn×n is the matrix of conditional correlations of at at time t. In the CCC-GARCH
model, the elements of Rt are constants, whilst in the DCC-GARCH model, they are
time-varying.

In particular, Dt = diag(
√
h1t,
√
h2t, ...,

√
hnt) where

√
hit are the conditional standard

deviations from the n different univariate GARCH models. Moreover, we have that Rt

takes the following form:

Rt =


1 ρ12,t ρ13,t . . . ρ1n,t
ρ12,t 1 ρ23,t . . . ρ2n,t

ρ13,t ρ23,t 1
. . .

...
...

...
. . . . . . ρn−1,n,t

ρ1n,t ρ2n,t . . . ρn−1,n,t 1

 (4)

The elements of Ht = DtRtDt are:

[Ht]ij = ρij
√
hithjt (5)

where ρii = 1.
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Now, in order for Rt to be a conditional correlation matrix, two conditions must be
met:

1. Ht has to be positive-definite as it is a covariance matrix. To ensure this, Rt has
to be positive-definite.

2. All the elements of Rt have to be less than or equal to 1 in magnitude.

In order to resolve these two issues, Engel proposed that Rt be further decomposed
into:

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2 (6)

Qt = (1− α− β)S + αεt−1ε
′

t−1 + βQt−1 (7)

where S = Cov[εtε
′
t] = E[εtε

′
t] is the unconditional covariance matrix of the

standardised errors εt. S can be estimated as:

Ŝ =
1

T

T∑
t=1

εtε
′

t (8)

Furthermore, α and β are scalars, and diag(Qt)
−1/2 consists of the square roots of the

diagonal elements of Qt. Pre- and post-multiplication of Qt by diag(Qt)
−1/2 thus

ensures that each element of Rt is less than or equal to 1 in magnitude.

In order to guarantee that Rt is positive-definite (to ensure that the first condition
is satisfied), Qt has to be positive-definite. By rearranging (7), it can be seen that the
process Qt is modelled using a GARCH(1,1). Hence, the requirements for Qt to positive
definite are that α ≥ 0, β ≥ 0, and α + β < 1. Moreover, the fact that the conditional
correlations are modelled by a GARCH(1,1) implies that the conditional correlations at
time t are computed using all the previous correlations from time t = 1, ..., t− 1 (a form
of smoothing).

4 Methodology

4.1 Overview of approaches taken

Having provided an overview of several statistical methods for forecasting conditional
correlations, two different approaches were adopted for this project. Firstly, we attempted
to directly model the pairwise univariate correlations between each of the five risk factors
using an ARMA(p,q) model with a variable rolling window. This involved creating
a rolling window of 12 observations between two time series based on training data, and
then computing the correlation between the two time series for that rolling window of
observations to create a new time series of correlations. Next, an ARMA(p,q) model was
fitted directly to this time series of correlations, whose order was chosen using the Akaike
Information Criteria (AIC). Lastly, 12 rolling 1-step ahead forecasts were obtained and
compared with the actual rolling correlation in the test data. This process was repeated
for each combination of the five univariate time series.
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The second approach was to model the overall conditional correlation matrix using
the DCC-GARCH. Estimation of the DCC-GARCH model was conducted in R using
the rmgarch package, and was achieved using a two-step procedure. Firstly, univariate
GARCH(p,q) models were fitted separately to the five risk factors that were previously
identified. The optimal values of p and q were chosen using the AIC and were noted
down. Secondly, a DCC-GARCH(1,1) model was fitted to the multivariate time series to
obtain estimates for α and β. Finally, 12 1-step ahead rolling forecasts for the conditional
correlation matrix were computed.

We note that the errors for the DCC-GARCH model were all assumed to follow a
Student’s t-distribution. In addition, stationarity of all the time series data was confirmed
using the Dickey-Fuller test. The univariate GARCH models for each of the five risk
factors are as follows:

• FTSE: GARCH(1,1)

• Yield: GARCH(1,2)

• GDP: GARCH(1,1)

• Inflation: GARCH(1,2)

• Risk-free rate: GARCH(1,2)

4.2 Data preprocessing

Before analysing the data, some preprocessing was necessary. The datasets for the
risk factors had dates ranging from 1980 to 2020. Hence, all dates that had missing
values for any of the time series were removed so as to ensure each factor had consistent
representation in the final dataset. We also noted that data for all the risk factors had
a monthly frequency apart from GDP and inflation which had a yearly frequency. To
remedy this, they were upsampled into monthly frequencies using linear interpolation.
Linear interpolation was selected since it was simple to implement and easy to under-
stand. Other interpolation methods attempted were polynomial, spline and piecewise-
polynomial. Furthermore, log-returns were calculated over the entirety of this dataset
and the Dickey-Fuller test was applied to confirme stationarity for each of the time series.
Plots of the raw and log-transformed data are shown in Figure 3 below. Note that the
blue lines indicate the unprocessed data, whilst the red lines indicate the log-returns of
each risk factor. Indeed, each of the plots suggest that the log-returns of each risk factor
is stationary.
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Figure 3: Plots of raw and proccessed data for each risk factor
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5 Results

5.1 ARMA(p,q) model with a variable rolling window

Firstly, using the AIC as a criteria for choosing ARMA models for a 12-month rolling
window yielded the following models:

Table 1: ARMA model orders for each pair of risk factors

Correlation FTSE Yield Inflation GDP Risk-free rate
FTSE -
Yield 4,3 -
Inflation 1,0 4,1 -
GDP 1,0 4,2 2,0 -
Risk-free rate 2,1 4,0 4,1 4,2 -

The table above describes the models used for each pair of correlation. The data
is presented in the format (p,q) where p and q correspond to the parameters in the
ARMA(p,q) model. With these models, the 12 step ahead forecasts were then obtained
and plotted in Figure 4 below. Note that the pairwise correlations of the 5 factors are
presented in a lower diagonal matrix format, with red lines corresponding to the prediction
intervals around the ARMA forecasts (yellow lines). The true rolling correlation is seen
in blue.

It can be seen that the forecasts are often constant or with a low drift. They hence
do not capture the volatility of the correlations. Moreover, the prediction intervals are
extremely wide and in the case of GDP and inflation, exceed the range of [−1, 1]. Note
that this pair of risk factors have interpolated values and hence this may have affected the
forecasts. It can thus be concluded that the ARMA models are less effective at forecasting
the correlations between the risk factors.
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Figure 4: Plots of the forecasted correlations made using the ARMA models and the
true correlations computed using a 12-month rolling window for each pair of risk factors

5.2 DCC-GARCH

The estimates of the DCC-GARCH joint parameters α and β were 0.186 and 0.562
respectively, and as 0.186 + 0.562 = 0.748 < 1, the condition for the GARCH model
was satisfied. Both parameters were statistically highly significant, implying that the
conditional correlations are indeed time-varying and that a DCC-GARCH model was
appropriate.

Once the forecasts using the DCC-GARCH were computed, it was necessary to evalute
the accuracy of these forecasts. To that end, we used the rolling correlation of the data
spanning both the training and test data as a proxy for the true conditional correlation.
As an intial test, the 12-month rolling correlation was calculated for the test set and
compared with the DCC-GARCH forecasts. The results are seen in Figure 5 below. In
the plots, the blue line refers to the rolling correlation values while the yellow line refers
to the DCC-GARCH forecast.
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Figure 5: Plots of the forecasted correlations made using the DCC-GARCH and the
true correlations computed using a 12-month rolling window for each pair of risk factors

Further rolling correlations were subsequently calculated, with window lengths ranging
from 4 to 60 months. For each window length, we calculated the Mean Squared Error
(MSE) and Mean Absolute Error (MAE) between the rolling correlation and DCC fore-
cast. The tables below (Figures 6 and 7) show which lengths give the optimal error for
each pair of correlation by presenting the top 10 best rolling correlation lengths in terms
of lowest error value, in decreasing order. As an example, for risk factors Yield and FTSE,
the 22 month rolling correlation gives the lowest error in terms of both MSE and MAE,
followed by 23 months (MSE) and 21 months (MAE).
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Figure 6: Top 10 rolling window lengths for each pair of risk factors that minimise the
Mean Squared Error between the rolling correlations and DCC forecasts

Figure 7: Top 10 rolling window lengths for each pair of risk factors that minimise the
Mean Absolute Error between the rolling correlations and DCC forecasts

Figure 8 below presents another plot for the errors and the rolling window correlation
length for each pair of correlations, which is shown in a lower diagonal matrix form. For
example in the top left plot, for Yield and FTSE pairwise correlations, we see the MSE
and MAE decreasing with increasing rolling window length.
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Figure 8: Plot of MSE/MAE vs the rolling window lengths for each risk factor

We note that each rolling correlation had an error value at each window length ranging
from length 4 to 60 months. Across 10 rolling correlations, we then obtained a vector of
dimension 10 of the error values at each specific rolling window length. By taking the
norm of this vector, we obtain a normalised error value for each rolling window length.
In this case, the L2 norm was chosen. We then plotted the normalised error value against
the rolling window length as shown in Figure 9 below. Based on MSE, it can be seen
that the minimum error occurs at a window length of 23 months. We thus conclucded
that this is the ideal length for rolling window correlations. Finally, we plotted the rolling
correlation of length 23 months against the DCC-GARCH forecasts, as shown in Figure
10 below. Visually, it can be seen that the DCC-GARCH forecasts are more accurate at
capturing the volatility of the rolling correlations compared to the ARMA models seen
earlier. The DCC-GARCH also guarantees that the output values are in [−1, 1].
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Figure 9: Plot of normed error (MSE/MAE) vs the rolling correlation window length
in months
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Figure 10: Plots of the forecasted correlations made using the DCC-GARCH and the
true correlations computed using a 23-month rolling window for each pair of risk factors

6 Evaluation

6.1 Limitations of the DCC-GARCH for forecasting

Although the DCC-GARCH model is capable of computing the matrix of conditional
correlations for a set of time series data, there are several known issues regarding the
statistical properties of the model. These issues are concisely summarised by Caporin &
McAleer (2013). Two of them include:

• The matrix Rt from the DCC-GARCH does not necessarily represent the dynamic
conditional correlation matrix of the process due to the way it is constructed.
Namely, Caporin and McAleer argue that the way Rt is standardised simply using
the formula Rt = diag(Qt)

−1/2Qtdiag(Qt)
−1/2 does not adequately qualify Rt to be

proper dynamic conditional correlation matrix. This is due to the fact that Qt is
not the conditional covariance of εt, which is in fact E[εtε

′
t|Ft−1] = Rt. Hence, Qt
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has no proper interpretation as either a dynamic conditional covariance or dynamic
conditional correlation matrix (Caporin & McAleer, 2013).

• There is no derivation of the DCC-GARCH and its mathematical properties, and a
lack of any demonstration of the asymptotic properties of the estimated parameters.
It also does not have testable regularity conditions. Hence, there is no guarantee
that the model is consistent, nor that the DCC-GARCH estimates have any con-
nection to the definition of dynamic conditional correlations (Caporin & McAleer,
2013).

Owing to these issues among others, it has thus been suggested that the DCC-GARCH
be used as a diagnostic check rather than a proper model for correlations. That being
said, it has been noted that the DCC-GARCH does perform well empirically, due to
reasons such as ease of estimation (Caporin & McAleer, 2013). Caporin and McAleer
suggest that it can play a useful role in forecasting out-of-sample dynamic conditional
covariances and correlations (which was indeed the purpose of this project).

6.2 Further extensions

In this study, we only looked at the Pearson correlation coefficient to compare the
relationship between two variables. In long-run time series analysis, an alternative that
could be looked at is the cointegration of two time series. Furthermore, change point
detection was an interesting topic that we could not explore owing to a lack of time.
By utilising change point detection, we could identify multiple regimes in the time series
and apply different models to each of them. We could then further model these regime
changes with markov chains. Lastly, Principal Component GARCH offers an interesting
alternative to volatility modelling. By applying Principal Components Analysis (PCA) to
the high dimensional dataset, we can reduce it to a lower dimensional space of orthogonal
(and hence independent) principal components. We could then apply a GARCH model
to these principal components.

7 Conclusion

Furthermore, we determined that 23 months was the optimal length to minimise the
MSE between the true rolling correlations of the observed data and DCC-GARCH fore-
casts. We believe that this is the ideal tool for forecasting and analysing volatility of time
series for several reasons:
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Our research revealed that the DCC-GARCH model was  the  superior  method  for  ro-
bustly  calculating  the  correlations  between  the  chosen  risk  factors.  The factors  were

chosen on the preface of their proposed relationship between one  another  and  more  im-
portantly, the influential relationship they held with a GI’s products,  capital  model  and

assets and liabilities.  Validation of these factors comes in the form of  our  model  success-
fully forecasting the expected link between  the  factors.  For  example, we  observed  that

equity and interest rate level dependencies range from low  negative  to  medium  positive,
while dependencies between the risk free rate and other market risks are typically medium

positive, which were all as expected.



• The model helps in the detection of possible changes in conditional correlations over
time, which allows for us to detect dynamic investor behaviour in response to news
and innovations.

• The DCC-GARCH measure is appropriate to investigate possible markets during
crisis periods.

• The DCC-GARCH model estimates correlation coefficients of the standardised
residuals and so accounts for heteroskedasticity directly.

• Since the volatility is adjusted by the procedure, the time-varying correlation does
not have bias from volatility. Unlike the volatility-adjusted cross-market correla-
tions, DCC-GARCH continuously adjusts the correlation for time-varying volatility.
This will certainly improve the accuracy of a volatility adjustment, which is impor-
tant as the Prudential Regulation Authority (PRA) has proposed a new supervisory
statement related to the application of a dynamic volatility adjustment (VA) in the
modelling of Solvency II (SII) market risk stresses, whereby the VA is a stabilising
measure intended to avoid excessive short term volatility of own funds under SII.

This report also notes that the DCC-GARCH model suffers from several drawbacks
as notably stated in Caporin & McAleer (2013), and thus should be used with caution.
Moreover, further research on models such as the Principle Component GARCH could
be conducted to assess their viability as an alternative to the DCC-GARCH.

References

Ahlgrim, K. C., & D’Arcy, S. P. (2012). The effect of deflation or high inflation on
the insurance industry. Casualty Actuarial Society, Canadian Institute of Actuaries
and Society of Actuaries .

Bollerslev, T. (1990). Modelling the coherence in short-run nominal exchange rates: a
multivariate generalized arch model. The review of economics and statistics , 498–
505.

Caporin, M., & McAleer, M. (2013). Ten things you should know about the dynamic
conditional correlation representation. Econometrics , 1 (1), 115–126.

Drummond, C. (2019). Solvency ii reporting survey 2019. https://www.lcp.uk.com/

insurance/publications/solvency-ii-reporting-survey-2019/.
Engle, R. (2002). Dynamic conditional correlation: A simple class of multivariate gener-

alized autoregressive conditional heteroskedasticity models. Journal of Business &
Economic Statistics , 20 (3), 339–350.

James, A., & Normand, A. (2019). Pwc solvency ii life insurers capital model sur-
vey summary report. https://www.pwc.co.uk/audit-assurance/assets/pdf/

pwc-solvency-ii-life-insurers-capital-model-survey-2019.pdf.
Orskaug, E. (2009). Multivariate dcc-garch model:-with various error distributions (Un-

published master’s thesis). Institutt for matematiske fag.
Ozdagli, A. K., & Wang, Z. K. (2019). Interest rates and insurance company investment

behavior. Available at SSRN 3479663 .
Ul Din, S. M., Abu-Bakar, A., & Regupathi, A. (2017). Does insurance promote economic

growth: A comparative study of developed and emerging/developing economies.
Cogent Economics & Finance, 5 (1), 1390029.

17

https://www.lcp.uk.com/insurance/publications/solvency-ii-reporting-survey-2019/
https://www.lcp.uk.com/insurance/publications/solvency-ii-reporting-survey-2019/
https://www.pwc.co.uk/audit-assurance/assets/pdf/pwc-solvency-ii-life-insurers-capital-model-survey-2019.pdf
https://www.pwc.co.uk/audit-assurance/assets/pdf/pwc-solvency-ii-life-insurers-capital-model-survey-2019.pdf

	Introduction
	Risk Factors
	Theoretical Framework
	Methods of Establishing Rolling Windows
	Methods for Forecasting: The DCC-GARCH model

	Methodology
	Overview of approaches taken
	Data preprocessing

	Results
	ARMA(p,q) model with a variable rolling window
	DCC-GARCH

	Evaluation
	Limitations of the DCC-GARCH for forecasting
	Further extensions

	Conclusion
	References



